Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Viruses ; 13(11)2021 10 22.
Article in English | MEDLINE | ID: covidwho-1538535

ABSTRACT

Our understanding of RNA structure has lagged behind that of proteins and most other biological polymers, largely because of its ability to adopt multiple, and often very different, functional conformations within a single molecule. Flexibility and multifunctionality appear to be its hallmarks. Conventional biochemical and biophysical techniques all have limitations in solving RNA structure and to address this in recent years we have seen the emergence of a wide diversity of techniques applied to RNA structural analysis and an accompanying appreciation of its ubiquity and versatility. Viral RNA is a particularly productive area to study in that this economy of function within a single molecule admirably suits the minimalist lifestyle of viruses. Here, we review the major techniques that are being used to elucidate RNA conformational flexibility and exemplify how the structure and function are, as in all biology, tightly linked.


Subject(s)
RNA Viruses/chemistry , RNA, Viral/chemistry , Nucleic Acid Conformation , RNA Viruses/genetics , RNA Viruses/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism
2.
Comput Struct Biotechnol J ; 19: 3580-3588, 2021.
Article in English | MEDLINE | ID: covidwho-1267253

ABSTRACT

Programmed -1 ribosomal frameshifting (-1 PRF) is a translation mechanism that regulates the relative expression level of two proteins encoded on the same messenger RNA (mRNA). This regulation is commonly used by viruses such as coronaviruses and retroviruses but rarely by host human cells, and for this reason, it has long been considered as a therapeutic target for antiviral drug development. Understanding the molecular mechanism of -1 PRF is one step toward this goal. Minus-one PRF occurs with a certain efficiency when translating ribosomes encounter the specialized mRNA signal consisting of the frameshifting site and a downstream stimulatory structure, which impedes translocation of the ribosome. The impeded ribosome can still undergo profound conformational changes to proceed with translocation; however, some of these changes may be unique and essential to frameshifting. In addition, most stimulatory structures exhibit conformational dynamics and sufficient mechanical strength, which, when under the action of ribosomes, may in turn further promote -1 PRF efficiency. In this review, we discuss how the dynamic features of ribosomes and mRNA stimulatory structures may influence the occurrence of -1 PRF and propose a hypothetical frameshifting model that recapitulates the role of conformational dynamics.

SELECTION OF CITATIONS
SEARCH DETAIL